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Nonlinear wave-kinetic interactions are analysed by enxamining the propagation of 
finite-amplitude waves in a gaseous medium undergoing non-equilibrium exothermic 
reaction. An exact nonlinear wave equation is developed, and the various coupling 
mechanisms are identified. 

An approximate equation, which takes into account the chemical and transport 
effects, is derived for high-frequency weak nonlinear waves. The equation is numeri- 
cally integrated to predict the amplification rates of weak shock pulses and changes in 
their wave forms under different reaction conditions. 

Dramatic nonlinear amplification is predicted for mixtures of high activation 
energies. Furthermore, the amplification rates are enhanced with incremed shock 
strength and pulse duration. In the latter instance, a threshold value is identified, 
above which wave amplification is a maximum. 

1. Introduction 
It has been established both theoretically and experimentally that irreversible 

exothermic reactions are capable of amplifying acoustic pressure disturbances. 
Several earlier thearetical studies (Toong 1972- Toong et a,?. 1975; Garris, Toong & 
Patureau 1975; Clarke 1977, 1978a,b) have examined the chemical effects on the 
propagation of sound waves in spatially homogeneous irreversibly reacting mixtures. 
These studies have dealt mainly with linearized theories of acoustic-kinetic inter- 
actions; nevertheless, substantial amplification of the acoustic waves was found 
possible. Furthermore, the linearized quasi-steady theory developed by Toong and 
his co-workers was successful in predicting the observed sound amplification rates 
when the ratio Sr of the characteristic chemical time to the wave period is large 
(Patureau, Toong & Garris 1977). However, if i2 is decreased below a critical value, 
which depends on the reaction kinetic parameters, theory predicts larger amplification 
rates (Garris et al. 1975). Recent experimental results by the authors (Abouseif, Toong 
t Converti 1979) corroborated these theoretical predictions. 

The experimental results have also indicated that, at high amplification rates, sound 
waves may develop into weak shocks in rather short time intervals, thereby intro- 
ducing both hydrodynamic and chemical-kinetic nonlinear effects. Thus, a nonlinear 
model becomes essential for predicting the temporal evoiution of the wave amplitudes 
and structure during the reaction history. Such information should enable one to 
assess the role of nonlinear wave-kinetic interactions in various reacting flow 
instabilities (Toong 1974). 
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Clarke (19783) and Blythe (1979) examined the case where the wave amplitude is 
comparable in magnitude to the inverse (dimensionless) activation energy (p)  of the 
reacting medium. Although such assumption implies significant nonlinear kinetic 
effects and, consequently, leads to dramatic increases in amplification rates, it does 
not necessarily require that hydrodynamic nonlinearities be quite as important. 
Indeed, activation energies may be large enough to satisfy this condition with rather 
weak finite-amplitude waves. In  addition, Clarke focused his attention on the ‘ awk- 
ward’ shock-fitting problem in the presence of an irreversible reaction, which is 
essential when transport effects are neglected. 

This paper will first examine the possible nonlinear aspects of wave-kinetic inter- 
actions in irreversibly reacting media. An exact nonlinear pressure wave equation will 
be developed to identify the various possible nonlinear effects. The linearized theory 
will then be reviewed and compared with the experimental results. In the second part 
of the paper, an approximate wave equation will be developed for weak nonlinear 
high-frequency waves. The equation is valid for 8 = p’ /po  < 1.0 and &3 5 1. Moreover, 
the dissipation mechanisms (transport effects) are accounted for. This, in effect, 
eliminates the need for the shock-fitting process. 

Finally, the approximate wave equation is numerically integrated to predict the 
amplification rates of weak shock pulses and changes in their wave forms. In particular, 
the effects of pulse strength and duration, reaction activation energy and thermicity 
are examined, and the results are compared with the linear predictions. 

2. Possible nonlinear effects 
The importance of an exact wave equation for non-equilibrium reacting flows is 

self-evident as regards identifying the additional nonlinear effects (or terms) that 
do not appear in acoustic perturbation problems. The derivation is most easily made 
upon noting that, in the absence of shock fronts, the transport effects may be neglected, 
and the governing equations may thus be transformed [see appendix A] into the 
following nonlinear wave equation, 

(1) 
where p and p are, respectively, pressure and density, af is the isentropic frozen sound 
speed, and y, is the frozen specific-heat ratio; Y;: and hj are the mass fraction, and the 
enthalpy of formation of the j t h  specie respectively. Rf is the frozen mean specific gas 
constant of the n-species gaseous mixture. 

The left-hand side of (1) is the classical wave equation, with the exception that local 
time derivatives are replaced by material derivatives, which account for nonlinear 
convection. The right-hand side displays all the source or forcing terms, which can 
affect the wave propagation. The Grst term represents nonlinear eteepening and 
scattering effects. The second term accounts for the changes in a characteristic flow 
impedance paf. Such changes may result from variations in the mean or local 
values of gas temperature, density and concentration. The third term accounts for 
the changes in the mixture composition, as manifested by the mean gas constant R,. 
Finally, the last term represents the effect of reaction thermicity. It is by far the most 
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important element in wave-kinetic coupling, particularly in exothermic flows, and 
some remarks on its nature are in order. 

As sta,ted in (A 6), the reaction rate wj is, in general, a function of the mass fraction 
( j  = 1, ... n) ,  density p, and temperature T .  Thus, perturbations of these flow 

variables, whether due to pressure or thermal fluctuations, should result in 
perturbations of the reaction rates. In order to illustrate this further, one may apply 
the Arrhenius kinetics for the case of a single reacting species, namely 

DY 
w = -pm = K[pY]”exp( -E/iET), 

where m, E and K are the reaction order, activation energy, and specific reaction rate, 
respectively. Upon perturbing (2), one obtains 

and wo = K[~0YOlrn exp ( - B). (4) 

In  exothermic flows, /3/m 1 (typical values are N 10 + 50). Since 

it follows that the highly nonlinear kinetic temperature dependence (namely /?T’/T) 
will manifest itself at disturbance levels far below those required for the, usually, weak 
nonlinear density and mass fraction dependence, which is indicated by the reaction 
order. Moreover, since hydrodynamic nonlinearities manifest themselves strongly 
when p’/po,  p’/po, T’/To 2 O( l ) ,  while kinetic nonlinearity becomes significant when 
BT’/T0 2 O(1) [cf. equation (3)], one may thus encounter several distinct regimes. 
First, we introduce the disturbance level parameter 6, where 

and 

PI 6 s -  
PO 

p’ T’ - - = O(6).  
Po’ To 

(7) 

If 6 < 1, and P S  < 1, one may linearize both hydrodynamic and kinetic terms. Such 
limit was the subject of the extensive linear theoretical analyses of Toong (1972), 
Toong et al. (1975), Garris et al. (1975), Clarke (1977, 1978a,b), and the experimental 
studies of Patureau et al. (1977) and Abouseif et al. (1979), who studied the sound 
amplification in irreversible photochemical hydrogen-chlorine reaction. (The results 
of this linearized analysis will be reviewed briefly in the following section.) 

However, if 6 < 1 ,  but /36 2 O( l) ,  one encounters the case where acoustic distur- 
bances may indeed result in kinetic nonlinearity. Under such conditions, it is per- 
missible to linearize the hydrodynamic terms, but not the kinetic terms (Clarke 1979; 
Blythe 1979). This limit describes the case where linear hydrodynamics (or acoustics) 
may not necessarily imply linearized kinetics. 

2 O( l ) ,  both hydrodynamic and kinetic nonlinearities 
should be accounted for. 

Finally, if 6 2 O( 1) and 
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Interestingly enough, since the nonlinear hydrodynamic terms are proportional to 
82, while nonlinear kinetic terms follow an exponential behaviour, more than one 
regime may be encountered in the course of the chemical reaction. The last two cases 
will be the subject of the following analysis. However, the linear analysis is discussed 
first. 

3. Linear effects 
The linear studies focused on the propagation of plane acoustic waves of specified 

wavelength in a homogeneous, stagnant, lossless gaseous medium of infinite extent, 
and capable of chemically reacting. A t  time t = 0, a simple one-step exothermic 
reaction, following Arrhenius kinetics, is initiated. The molecular mass and specific 
heats of the medium are assumed unchanged by the reaction. In addition, the pressure 
level S is presumed to be arbitrarily small to allow for linearized kinetics (/?8 < 1) .  

Under such conditions, the following set of linear coupled equations can be derived? 
(Toong et al. 1975; Abouseif 1979): 

where P, s’, and $ are the amplitudes of the mms fraction, entropy, and pressure 
perturbations, respectively; cp is the specific heat a t  constant pressure. The instan- 
taneous characteristic chemical time, tc, is defined as 

t ,  = To/(dTo/dt);  (9) 

w is the instantaneous acoustic frequency, given by 

where 

and subscripts (0) and (i) designate, respectively, the instantaneous mean, and initial 
values. The influence coefficients, Gik, in ( 8 )  represent the chemical effects and, thus, 
are dependent on the various kinetic parameters, as shown in table 1.  D,, is Damkohler’s 
second similarity group, given by 

where AH is the enthalpy of reaction, and is assumed constant throughout the reaction 
history. 

3.1. High-frequency limit (quasi-steady conditions) 
Upon examining equations (8a, b), one observes that when the acoustic wave period 
(defined as the inverse of acoustic frequency) satisfies the relationship 

t, = 0l-l 4 ( t c / G y p ;  tC/G,,) (13) 

t It should be noted that the equations are written here in terms of dimensional time. 
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or, equally, when the non-dimensional frequency (which represents the ratio of 
chemical to acoustic time) 

Q tcw B (Gyp ,  G,), (14) 

the rates of change in the mass fraction and entropy fluctuations are governed 
primarily by the pressure perturbations. Equations (8a) and (8b) are then reduced to 

Consequently, one may demonstrate that the instantaneous amplitude of the incident 
wave is given by 

where A,  the amplification rate, is given by the expression (Abouseif 1979) 

1 dTo 
2yT0 dt 

A ( t )  = -- 

Equation ( 14) depicts the high-frequency limit, which corresponds to high acoustic 
frequencies and/or slow reaction rates. Under such ‘ quasi-steady ’ conditions, wave 
amplification is merely due to the response of the reaction rate to the ‘forcing ’ acoustic 
perturbations. It should be noted, however, that the result obtained by Clarke ( 1 9 7 8 ~ )  
is slightly different from that of (17b) because of the different kinetic model employed 
in his analysis. 

Figure 1 summarizes the results of the extensive experimental studies reported by 
Patureau et al. (1977) and the authors (1979), utilizing the hydrogen-chlorine photo- 
chemical reaction [Pi = 8-9, m N 1-01. The figure compares the observed amplification 
rates Aa with the predictions of the quasi-steady theory, using two-cycle sound 
bursts, standing waves, and weak A’-shocks. One observes good agreement over a range 
of 6 = + 10-2, and Qi N 5000 -+ 300. 

3.2.  Low-frequency limit (non-quasi-steady conditions) 

At lower acoustic frequencies and faster reaction rates, when Q becomes comparable 
to the chemical influence coefficients Gik, the quasi-steady results break down. The 

t Under such conditions, 

thus making the contributions from the other two forcing terms on the right-hand sides of (8a) 
end ( 8 b )  negligible. Note also the scattered pressure waves are of O(5 /cp ) .  
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FIGURE 1.  Observed sound amplification rate vemw predicted rate for tone-burst 
and standing-wave experiments ( x ), and N-shock experiments (0). 

magnitudes of the entropy and mass fraction fluctuations, as well as the scattered 
waves, become of the qrder of the incident pressure level. Consequently, the fluctua- 
tions in the entropy production and specie consumption may greatly exceed their 
values in the quasi-steady limit, thereby leading to stronger coupling between 
acoustics and kinetics. 

Recalling (8 a )  and (8 b ) ,  one observes that when 

t, oc 0 (" , ") 
GYP Gw 

or, equally, when 

the rates of change in the fluctuations of the entropy and mass fraction would also be 
proportional to, and thus dependent on, their own magnitudes. The most interesting 
feature about this fact is that it  leads to the exponential growth of these variables. This 
enhances the reaction rate perturbations, and, hence, energy release. Since the latter 
constitutes the origin of wave amplification, stronger effects should be expected. 
This observation may be further illustrated by noting that B is a measure of the 

irreversible heating effect due to perturbations of the chemical reaction. At low 
frequencies, this irreversible heating may become sufficiently large, when compared 
to the reversible acoustic heating, to trigger thermal instability, which is characteristic 
of irreversible exothermic reactions. This instability will further accelerate the rate 
of entropy production, thereby augmenting the amplification rates. 
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Numerical computations (Garris et al. 1975; Abouseif 1979) for non-quasi-steady 
conditions have indeed predicted significant increases in amplification rates. Further- 
more, the experimental results by the authors (1979) have corroborated these 
theoretical findings. 

The following analysis will examine the behaviour of high-frequency weak nonlinear 
waves, in particular, when S < 1, 5 1, and IR 1. 

4. Nonlinear effects, high-frequency limit 
The objective of deriving the exact wave equation ( l ) ,  notwithstanding the formi- 

dable task of solving it, was essentially to reveal all the possible nonlinear hydro- 
dynamic and chemical-kinetic effects. In  this section, an approximate equation will 
be derived for high-frequency weak nonlinear waves. The effects of viscosity and 
thermal conductivity are accounted for in order to accommodate shock fronts 
and, thus, eliminate the necessity of the shock-fitting process. However, the coefficients 
of viscosity and thermal conductivity are assumed constant throughout the reaction 
history. 

4.1. Physical model and considerations 

The physical model considered comprises a plane finite-amplitude compression wave of 
specified initial wavelength hi, and headed by a shock front (the assumption is made 
that the wavelength is much greater than the shock-front thickness). The wave is 
travelling in a homogeneous, stagnant gaseous medium of infinite extent, and capable 
of chemically reacting. Similarly to the linear model, a simple one-step irreversible 
reaction is initiated at time t = 0. Furthermore, the reaction rate is assumed to be of 
zeroth order, with an Arrhenius specific reaction rate. A higher-order reaction (m > 0) 
would introduce the concentration dependence, thereby complicating the analysis to 
a great extent. However, as mentioned earlier, the nonlinear temperature dependence 
(accounted for in the rate expression) is far more crucial than the concentration 
dependence, particularly at high activation energies. In addition, the molecular mass 
and specific heats of the medium are assumed unchanged by the reaction. The effect of 
changes in mixture composition are, therefore, not considered in the following analysis. 

It is most helpful to note that the wave equation, (l) ,  takes account of waves 
travelling in both directions. Thus, considering an initially right-travelling wave, one 
should be able, in principle, to reduce this equation to a uni-directional wave equation, 
with an error proportional to the strength of the generated €eft-travelling waves. 
As indicated by ( l ) ,  scattering may occur in diabatic flows due to pressure-density 
interactions, whenever density or entropy pockets are formed. However, reaction- 
stimulated left-travelling waves may also occur due to perturbations in the chemical 
reaction. This may be seen if one recalls that a reacting particle, essentially, resembles 
a monopole which has no directional preference. Hence, when a right-travelling wave 
perturbs a reacting medium, the additional energy release (or entropy production) 
generates two equal and opposite wavelets. While the right-travelling wavelets lead 
to amplification of the original wave (whenever the phase requirement is met) the left- 
travelling wavelets merely modify the flow field behind the sKock front. 

In fact, entropy production by any physical process would invariably result in 
pressure waves. A simple illustration may be seen in wave reflection at a shock front, 
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due to viscous and thermal transport effects (Lighthill 1950). Thus, an estimate of the 
strength of these stimulated left-travelling waves is certainly essential to  provide a 
confident assessment of the validity of an approximate unidirectional wave equation. 

4.2. Characteristic equdions 

In  order to accomplish this, the governing equations are rearranged in the following 
characteristic form: 

valid along positive characteristics Cf, where ax+/&+ = u + a ;  

valid along negative characteristics C-, where dx-/at- = u - a;  D/Dt+ and DIDt- are 
the characteristic operators; $ and q are the dissipation function and heat conduction 
terms, respectively [see (A 10a) and (A 13)]. The viscosity pt is given by 

Pt = $P +Pix 

where p and ,ub are the coefficients of shear and bulk viscosity, respectively. 
The rate of entropy production is given by (Prigogine 1967) 

Ds 1 
Dt pT 
- = - [q+ # + wAH] 

valid along particle paths p ,  where dx/dt = u. 

relationship between p, p and s, namely 
Equations (A 12) and ( 1 9 ~ )  may be combined and integrated along p to yield a 

p = Bp(1ly)exp (s/2cp) (20) 

where B is a constant. It follows immediately from (A 9) and (A 1 if) that the speed of 
sound a, and gas temperature T are given by 

a = (y/B)tp(y-l)/ayexp (a/%,), (21a) 

Considering the physical model, then any flow quantity & may be written as 

Q(G t )  = Q&t) + Q‘(x, t ) ,  (22) 

where Qo is the spatial mean value, and Q’ is the perturbation, being the difference 
between the local and mean values of &. Combining (19) and (22), one obtains the 
spatial mean equations, given by 

uo = 0, po = constant, - DpO - - DpO - - - dpo - = (y-  l )woAH,  (23a,b,c) Dt+ Dt- dt 

t Subscript f was eliminated in accordance with the physical model, where R and y were 
Bssumed constant. 
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W J H ,  ( 2 3 4  

(23e)t 

(23, f, 9 )  

dsc.0 - POT0 at 

Kexp(-B), PO,$ GPO < P o , / ,  

0, Po = Po,r, 
wo= [ 

a !  = 0, qo = Qo = 0 ;  

p T E =  0 %  wAH, pT- Dsv - - q + $ .  

at 

sc and s, are the entropy production due to chemical reaction, and transport effects, 
respectively, and satisfy the following equations 

8 = sc+s,, (24a, b,  c) Dt 

Similarly, the perturbation equations are given by 

Dp' Du' a w  
Dt+ Dt+ axz ' -+pa- = (y - 1 )  [q' + Q' + w'AH] +apt- 

Du' aw E- pa - = (y  - 1 )  [q' + $' + w' A H ]  - apt - 
Dt- Dt- ax= ' 

DS: ( p . 2 ) '  = w'AH, pT - = q' + #', 
Dt 

where q' and $' are given by 

This formulation has two advantages. First, since we are concerned with the stimu- 
lated left-travelling waves, (2Sb) provides an appropriate means of estimating their 
strength. Secondly, it is best to consider separately the viscous and chemical contri- 
butions to entropy production, because then one may be able to identify the various 
limitations in both reacting and non-reacting flows. 

Now at this stage, we may proceed to answer the question concerning the left- 
travelling waves. 

4.3. Left-travelling waves 

The strength of the left-travelling waves may be estimated by integrating (25 b) along 
C- [see figure 21. First, the equation is rearranged so aa to read 

where rt is given by 
rt = FtlP. 

t Note from (23c) and (23d)  that, for a zeroth-order reaction, po(t)  and TJt)  do not approach 
their final values asymptotically (m when m > 0), but rather at  a finite rate. These kal  values 
(namely, po,f and To,f) correapond to Y,  = 0 (complete depletion of the reactant) or reaction 
completion. Thus, when Yo = 0 (or equally when p o  = w0 becomes zero and remains zero 
thereafter. 
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Y 

FIQIJRE 2. The (2, t )  plane showing the shock pulse, and the characteristic directions. 

Should the flow field be shockless and non-reacting (i.e. homentropic), the right- 
hand side of (26 )  vanishes, and one may integrate the left-hand side to yield the 
clwsical Riemann invariant; namely 

[a-uo]-u; = 0 ( 2 7 4  
2 

0 
or 

where use was made of ( 2 0 )  and ( 2 1 a )  with 8 = 0. The quantity u; is the velocity 
perturbation due to a pressure perturbation, 8, under homentropic conditions. It should 
be emphasized that the vanishing right-hand sides of ( 2 7 a )  and (27b)  imply that no 
signal is propagating along C- or, alternatively, no left-travelling waves are generated. 

In the presence of chemical reactions and transport effects, however, the right-hand 
side of (27b)  should comprise terms of O(s’/c,); as evidenced by both the right-hand 
side of (26) ,  and the entropy dependence of the impedance pa appearing in the same 
equation [see appendix B]. In  particular, one obtains in this case [cf. (B S)] 

After combining (27b)  and (28 ) ,  it transpires that 

= o  a,- . ( :I 
This, in effect, demonstrates that the strength of the left-travelling waves is of the 
order of the magnitude of the total entropy perturbation s’/cp just like the linear case 
under quasi-steady conditions (cf. footnote on p. 5) .  

In  the next section, such entropy production will be considered. 
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4.4. Entropy production 

By virtue of the RankineHugoniot relations, entropy production within shock fronts 
(due to transport phenomena) is solely dependent on the shock strength 6. On the other 
hand, entropy production due to chemical reactions has to be evaluated strictly 
according to (25c). The latter may be rearranged so as to read 

D8: 1 
Dt pT 
-- - - [ W' - SWO]  AH 

[w' - SW,] AH. 
1 

N- 

Po To 

For a zeroth-order Arrhenius expression, equation (3) reduces to 

W' - = exp (PT'IT) - 1, 
WO 

where T'/T is given by [cf. (21 a)] 

Combining (23c), (30) and (31), one obtains 

1 Ds: 1 dTo -- - - - [exp (PT'IT) - 1 - 61. 
c, Dt To dt 

Equation (32) may be integrated approximately, along the path of a reacting 
particle traversing the shock pulse, to provide an upper bound for s;; namely 

where the bracket represents the maximum value within the wave and t ,  and t, are, 
respectively, the wave period and the characteristic chemical time. The latter is 
defined by (9). 

In  terms of characteristic frequencies f, andfc, (33) may be expressed as 

where Q is the dimensionless wave frequency, defined as [cf. (14)] 

4.5. Weak nonlinear high-frequency waves 

When 6 6 1, it may be shown that (for y = 1.6), s:,/cp < 
other hand, for s:/cp 4 1 ,  (34) requires 

(Lighthill 1956). On the 

(36) Q B [exp (@'/TI - 1 - S]max. 

This, in essence, implies high-frequency waves and/or slow reaction rates. (It should 
be noted that, when m = 0 and T / T  < 1, (36) reduces to (14).) 
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Although (36) does not, explicitly, place any upper limit on the exponent PT'IT, 
nevertheless the physical model does indeed require that PT'IT < 1.  This may be 
seen by examining (23d), which provides an estima,te of the increase in the spatial mean 
value of s, during a characteristic wave period t,. In particular, one obtains that 

where use was made of (23c) and (Al l f ) .  Thus, by combining (34) and (37), it 
transpires that 

If /3T'/T > 1, [s6Imax may greatly exceed Asc, o. Since sc, is a measure of the mean 
reactedness of the medium, the assumption of a spatial mean value for all the flow 
variables should break down under such conditions. Consequently, one may conclude, 
the validity of the physical model mandates that 

/3; 5 1. (39) 

Furthermore, since T'/T - 6 according to (31 b) when s'/cp < 1 ,  then (39) reduces to 

pas 1. (40) 

Thus, for weak nonlinear high-frequency waves, and when PIS 5 1, (28) may be further 
manipulated, giving 

( 1 + S)(Y--l)/2Y a,. (41) 
2 u' N - 

(Y-1)  

Finally, by substituting (20), (21) and (41) into the perturbation equation along 
the positive characteristics C+, (25a), one obtains the approximate nonlinear wave 
equation 

where I'(6), B(S) and D(6) are given by 

r(8) = [F(6)  - 11, 
(Y - 1) 

(43) 

with F(6)  = (1  + 6)@-1)/2y, G(6)  = (1  + 6)(Y+l)/Q'; (461, (47) 

DII, is the initial value of Damkohler's second similarity group [cf. (12)], and given by 
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where To,r is the spatial mean gas temperature at reaction completion. It is important 
to note that (42) was derived in terms of 8, rather than p', because the former is the 
relevant nonlinear parameter. 

The left-hand side of (42) displays a uni-directional wave operator, which takes into 
account nonlinear convection through the term r(6). It is precisely this term that 
results in wave steepening and, thus, formation of shock fronts. The latter, in turn, will 
enhance the dissipation effects as indicated by D(S). The first two terms on the right- 
hand side of the equation manifest the nature of wave-kinetic interactions. In  par- 
ticular, they demonstrate the effect of reaction-rate perturbations, and mean pressure 
rise on wave amplification. These two chemical terms vanish at and after reaction 
completion since w, vanishes under these conditions [see (23 c), (23 e )  and (3 1 a ) ] .  

In  order to assess the balance between these various effects, (42) is numerically 
integrated, and the results are presented and discussed in the following section. 

5. Numerical results and discussion 
It is emphasized again that the ultimate objective of this work is to explore the role 

of wave-kinetic coupling in the inception and sustenance of instabilities in reacting 
flows. Perhaps foremost amongst these instabilities is the intriguing phenomenon of 
gaseous detonation. Interestingly enough, all detonable mixtures share the exclusive 
property of high activation energy. The latter, however, may drop considerably by 
changing the reaction conditions of a specific mixture, thereby suppressing its 
detonability . Thus, by focusing one's attention on a specific chemical system with 
variable kinetics, one may indeed shed light on the conditions leading to wave 
amplification and, thereon, triggering the instability. 

The hydrogen-chlorine reaction offers such advantageous feature. When photo- 
initiated, the activation energy is approximately 5.26 kcal/mol (Abouseif et al. 1979). 
However, at elevated temperatures ( - 1000 "C), thermal initiation raises the activa- 
tion energy to approximately 54 kcal/mol (Abouseif 1979). In  the latter instance, 
detonation has been consistently observed (Lee et al. 1972). 

The following analysis will examine the effect of both activation energy and reaction 
thermicity (mixture dilution) on nonlinear wave amplification. In  addition, the effects 
of initial wave strength and pulse duration will be analysed. 

6.1. Low activation energy 

The approximate wave equation; (42), was numerically integrated (see appendix C), 
using an explicit finite-difference scheme, to provide the amplification rate of weak 
shock pulses, of various initial strengths and durations, travelling in a reacting mixture 
with pi = 8.9, and thermicity = 1-9. Both values, which are based on an initial 
temperature of To, = 300 OK, represent typical photo-initiated hydrogen-chlorine 
mixtures. However, one should note that the above thermicity is approximately 20 yo 
of the stoichiometric value. 

The computations were performed for three initial shock strengths (namely, Si = 0- 1, 
0.3 and 0.6) and the temporal peak amplitude changes are shown in figure 3 (see 
figure 4 for the temporal evolution of the wave profile for Si = 0-3). The figure indicates 
that, when Si < 0.1, the amplification rates are identical to those predicted by the 
linear theory [cf. (1 7)]. Increasing the shock strength further would only slightly 
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FIUURE 3. Temporal peak amplitude changes for shock pulses of various initial strengths. 
Parameters employed: PI = 8.9, Dnmi = 1.9, (tw, = 0.039. .C. indicates reaction completion. 
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FIUURE 4. Temporal evolution of the wave profile for Sf = 0.3. Parmeters 
employed: = 8-9, Dn,< = 1.9, (tW,,/t,,,) = 0.039. 

enhance the amplification rates. Moreover, when 8, = 0.6, one observes that the final 
shock strength, at reaction completion, is less than that of the case where 8, = 0.3. 

The most striking fact abot this result is, merely, its occurrence despite the large 
increase in the magnitude of the nonlinear kinetic terms (pisi 2: 5.3 when 8, = 0.6, as 
compared to Bi8, z 0.9 when 8, = 0.1). Nonetheless, the explanation is found most 
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easily if one recalls the following factors. First, when S 2 0.1, nonlinear convection 
becomes increasingly significant. Consequently, the shock pulse ultimately develops 
into an N-wave (cf. figure 4). Prior to the N-wave formation, the shock front is 
not influenced by the trailing expansion wave. However, once the N-wave is fully 
developed, the amplification rate may suffer a considerable drop due to the attenuation 
effect of the expansion wave. The rapidity of this event depends primarily on the 
initial shock strength and the pulse width. 

Secondly, one may rewrite (5) so as to read 

B = $80, ClTO, (49) 

which illustrates the fact that /3 drops significantly as the reaction proceeds towards 
completion (where /3 -N 2-2), thereby reducing, considerably, the contribution of the 
nonlinear kinetic terms. 

Lastly, it is important to recall that w', which constitutes the origin of wave ampli- 
fication, is proportional to wo as demonstrated by (31 a). The latter, in turn, is dependent 
on the kinetic parameters /3 and K [cf. (23e)l. 

Thus, the h a 1  outcome, as far as net amplification is concerned, depends on these 
three factors simultaneously. For the kinetic parameters chosen, it appears that, when 
Si = 8.6, the attenuation effect of the expansion wave offsets the additional contribu- 
tion due to the nonlinear kinetic terms. The latter, themselves, also experience 
significant reduction as the mean temperature increases. It should be emphasized, 
however, that, with different kinetic parameters, the outcome may differ greatly. 

To illustrate further the effect of nonlinear convection on wave amplification, the 
temporal peak amplitude changes are shown in figure 5 for shock pulses of various 
initial durations t,, i, but identical initial strength, namely S, = 0.3. The figure indicates 
that, below a threshold initial duration of t,, i / t c ,  = 0.039, the shock strength falls 
significantly short of its maximum attainable value, if there were no attentuation. 

Finally, one observes a common feature displayed by figures 3-5, namely the rapid 
drop of shock strength near reaction completion. This results whenever the time rate of 
increase of the mean pressure po  exceeds that of p', and occurs, in this case, at a 
temperature ratio of T, = 2-76, or a corresponding thermicity of DII,i = 1.1.  Em- 
ploying a higher thermicity (DII,i = 1.9 or T, = 4.0) did, in fact, attenuate, rather 
than amplify, the shock pulse, as depicted by figures 3-5. Thus, although finite 
exothermicity is a necessary condition for wave amplification, one should note that 
employing stoichiometric mixtures may not necessarily enhance wave amplification. 

5.2.  High-activation energy 
With thermal initiation, however, the hydrogen-chlorine reaction acquires a dimen- 
sionless activation energy pi = 20 [based on an initial temperature To,i = 1300 O K ] .  

However, a thermicity identical to the previous case (DII,i = 1.9) was employed to 
facilitate the comparison. 

Figure 6 shows the effect of initial shock strength on wave amplification at the shock 
front. The figure indicates that, whereas Si < 0.01 corresponds to the linear limit, 
higher shock strengths result in dramatic increases in the amplification rates. This is 
attributed, in large part, to the highly nonlinear temperature dependence of the 
reaction rate, which accelerates considerably even under the slightest perturbation. 
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FIGURE 7. Effect of initial pulse duration, tw ,  on shock strength at reaction 
completion, 8,. Parameters employed: pi = 20, Dn. = 1.9, ai = 0.05. 

Moreover, at  these relatively weak shock strengths, the role of nonlinear coavection is 
largely reduced. Although initial shock strengths exceeding Si = 0.05 were not 
examined (because P i 4  would then exceed unity, thereby invalidating the physical 
model), nevertheless, it is believed that increasing the shock strength further would 
invariably enhance the amplification rates (Abouseif 1979). 

In contrast to figure 3, figure 6 demonstrates that 6 increases monotonically, and 
quite rapidly, near reaction comp1etion.t Should one employ a stoichiometric thermi- 
city (DII,d = 2.4), one would obtain a slight increase in the final shock strength. 

The effect of pulse duration, for a given initial strength (ai = 0.05), is shown in 
figure 7. Again, one identifies a threshold duration (t,Jte,* - 0.01) below which the 
amplification rates suffer considerable reduction. 

The present results, and those of Clarke (1979), do suggest very strongly that non- 
linear wave-kinetic interactions, in irreversible exothermic reactions with high activa- 
tion energy, lead to dramatic amplification of pressure disturbances. The finding of a 
threshold pulse duration for maximum amplification may also shed some light on the 
necessary requirements for the onset of instabilities in reacting flows. 

7. Conclusions 
The present study has examined the nonlinear coupling between exothermic 

chemical reactions and gas dynamics. When 8 c 1.0, &Y 5 1-0 and IR 9 1, an approxi- 
mate unidirectional nonlinear model may be used in lieu of the exact wave equation. 
The model, which incorporates the dissipation mechanisms, eliminates the need for 
the shock-fitting process. Numerical integration of the equation for different reaction 
conditions has revealed the following features: 

(a)  Nonlinear wave-kinetic coupling results in significant increases in wave 

t Note that the criterion for reaction completion is the depletion of reactant (namely, Yo = 0). 
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amplification. In  particular, reacting mixtures of high activation energies may lead 
to dramatic increases in amplification rates, even at low shock strengths. 

( b )  Although exothermicity is a necessary condition for wave amplification, 
employing stoichiometric mixtures does not necessarily enhance the amplification 
rates and, consequently, the maximum attainable shock strength at reaction 
completion. 

(c) A threshold pulse duration exists, whose specific value vanes with initial 
amplitude level and kinetic parameters. Below this minimum value, the amplification 
rates would be reduced significantly. 

The results presented in this paper may be of relevance to instability problems such 
as those related to direct initiation of detonation and transition from deflagration to 
detonation. The interaction between weak shock waves and the reaction zone, or 
fla.me, which leads to dramatic shock amplification, may indeed trigger and sustain 
these instabilities. 

Appendix A. Governing equations 
Conservation equations 

The governing equations in a one-dimensional, visous, thermally conducting, chemi- 
cally reacting gaseous mixture of n species can be written as followst (Lighthill 1956; 
Wood & Kirkwood 1957): 

wherep, p, u and T are, respectively, pressure, density, gas velocity, and gas tempera- 
ture. The quantities Y,, w,, Mi and h5 are the mass fraction, volumetric reaction rate, 
molecular mass, and enthalpy of formation of the j t h  specie, respectively. R is the 
universal gas constant. The frozen specific heat c p f ,  frozen expansion coefficient vf, 
and isentropic frozen sound speed uf are given by 

a2 = (2) . (A7), (A8), (A9) 
P ’ Y j )  - aP S , Y j  

Here h and 8 are, respectively, the enthalpy and entropy of the gaseous mixture; p, pa, 
and k are the shear viscosity, bulk viscosity, and thermal conductivity of the mixture. 
The dissipation function, 4,  is given by 

(A 10a) 

where Pt = $,u+Pb. (A l o b )  
t The effects of mass diffusion are not included for simplicity. 
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For a mixture of perfect gases, it may be shown that 

n 

5 - 1  
C p f  = z y3(cp),, Cf = (pT)-l, (A l l a , b )  

(A 1 Ic ,  d )  

where, again, subscript f denotes frozen conditions. Now, combining (A 4) and (A 1 l), 
and rearranging, one obtains 

where 

It should be noted, however, that, while R, is dependent on y3, -yf is dependent on 
both y3 and T. 

The nonlinear wave equation 
The set of governing equations [(A 1) to (A 3) and (A 12)] are transformed from the 
(x, t )  plane to a ($, t )  plane, where $ is the stream function defined by the identities 

and $ satisfies the continuity equation. 
Upon changing of co-ordinates, where 

the governing equations (without transport effects) become 

where 

(A 14a, b )  

(A 15a, b)  

(A 19a, b)  

From equations (A 16) and (A 17), by cross-differentiation, one eliminates u to obtain 
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Combining ( A  18) and ( A  20), it transpires that 

Appendix B. Left-travelling waves 
Integration of (26 )  along the C- characteristic provides a relationship between 

u'(x, t )  and$@, t ) .  When such relationship is compared to that given by (27b) ,  one may 
estimate the strength of the left-travelling waves due to dissipation and chemical 
effects. To accomplish this, it is important to notice that the contribution of the 
dissipation effects is significant only within the shock front, where the effect due to 
chemical reaction is negligible. The latter is justified on physical grounds, since a 
chemical reaction requires much more than the few collisions that constitute the 
shock front. 

Hence, the integration of (26) may be split into two parts, namely 

and 

where (n) designates the state just behind the shock front [see figure 21. Although the 
integral given by (B 1 )  is formidable to evaluate, nevertheless, one may obtain an 
exact relationship between p' and u' across the front merely by considering the 
Rankhc+Hugoniot relations. In particular, one obtains (Lighthill 1956) 

On the other hand, (B 2 ) ,  combined with (23c) ,  may be rearranged to read 

The first integral on the right-hand side of (B 4) may be evaluated with the aid of (20 )  
and (21a) .  Thus, one obtains 

+O a - . (B5) ( 0 3  
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The second integral, when combined with (30), may be shown to be of O(u08~/c,). 
Hence, (B 4 )  becomes 

Finally, combining (B 3) and (B 6), and rearranging, one obtains 

The second term on the right-hand side of (B7) is of O(uos~/c,) (Lighthill 1966). 
Accordingly, (B 7) may be further reduced to 

where 8’ = 8; -k 8;. 

Appendix C. Numerical integration 
In the finite-difference numerical computations, if the viscous term D(S) [cf. (42 ) ]  is 

to be retained, one has to cope with large local gradients. If one is to numerically 
simulate a shock pulse of amplitude, say, 6 = 1.0, and of duration t ,  = 10-8s (which 
corresponds to a pulse length of h, - 30cm) travelling in air, one is faced with the 
problem of dealing with a shock front of thickness A, N 10-scm, and duration 
t, N 3 x  10-10s. In  order to achieve numerical stability (particularly behind the 
shock front), one has to use a mesh spacing Ax no greater than A,/3 (Roache 1976), thus 
requiring approximately lo7 mesh points in the entire disturbance flow field. The use 
of such a large number of mesh points is prohibitively expensive. 

This difficulty may be overcome by ‘artificially’ increasing the coefficients of 
viscosity and thermal conductivity to such values which will result in a ‘thicker ’ shock 
front of, say, A, - 0.3 cm, or t, N 10-ss. Correspondingly, the number of mesh points 
would be approximately 300, thus drastically reducing the computational time. 
However, in order to justify this procedure, one has to consider, rather carefully, the 
ratios of the various characteristic times (or length scales) involved. 

The problem at hand, for example, suggests three characteristic times. First, the 
viscous time t, required for the passage of a fluid particle through the shock front. 
Second, the flow time t, required for a fluid particle to traverse the entire pulse length, 
A,. In addition to these, the characteristic chemical timei t, [see (9)] is involved. In 
the present theory, two assumptions were explicitly stated. First, it waa assumed that 
A, 9 A8, or t, B t, (see 8 4.1). The other assumption restricted the theory to high- 
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frequency waves, for which the ratio of chemical time to pulse durat.ion is much 
greater than unity (cf. 54.5). In  other words, 

Combining (C 1) and (C 2), one obtains 

Now one may artificially expand the shock front provided that (C 3) is not invali- 
dated. Thus, for a pulse duration oft, = 10-39 (which is typical of the values used in 
the paper), increasing t, from 3 x 10-10 to 10-5s would not invalidate (C 3), since the 
new value of t,/tw is still much less than 1, but greatly reduces the numerical computa- 
tions. (In this connection, it is important to note that under different circumstances, 
particularly when tJt, < 1, the maximum allowable artificial shock front duration 
becomes limited by the condition t,/tc -g 1 .) 

In  the present calculations, the shock pulse occupied typically 300-400 mesh points, 
while the shock front stretched across 4 mesh spacings only. This is the reason why 
the shock front appears as a discontinuity in figure 4. Furthermore, reducing the mesh 
spacing by a factor of two did not affect the predictions behind the shock, although the 
shock width was reduced by the same factor. 

This work was supported by the Air Force Office of Scientific Research (AFSC) under 
grant AFOSR-78-3662. 
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